查看: 6  |  回复: 0
  VB6 导出的数学
楼主
发表于 2024年12月8日 23:13

以下为非基本数学函数的列表,皆可由基本数学函数导出:

函数由基本函数导出之公式
Secant(正割)Sec(X) = 1 / Cos(X)
Cosecant(余割)Cosec(X) = 1 / Sin(X)
Cotangent(余切)Cotan(X) = 1 / Tan(X)
Inverse Sine(反正弦)Arcsin(X) = Atn(X / Sqr(-X * X + 1))
Inverse Cosine(反余弦)Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1)
Inverse Secant(反正割)Arcsec(X) = Atn(X / Sqr(X * X - 1)) + Sgn((X) - 1) * (2 * Atn(1))
Inverse Cosecant(反余割)Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1))
Inverse Cotangent(反余切)Arccotan(X) = Atn(X) + 2 * Atn(1)
Hyperbolic Sine(双曲正弦)HSin(X) = (Exp(X) - Exp(-X)) / 2
Hyperbolic Cosine(双曲余弦)HCos(X) = (Exp(X) + Exp(-X)) / 2
Hyperbolic Tangent(双曲正切)HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X))
Hyperbolic Secant(双曲正割)HSec(X) = 2 / (Exp(X) + Exp(-X))
Hyperbolic Cosecant(双曲余割)HCosec(X) = 2 / (Exp(X) - Exp(-X))
Hyperbolic Cotangent(双曲余切)HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))
Inverse Hyperbolic Sine(反双曲正弦)HArcsin(X) = Log(X + Sqr(X * X + 1))
Inverse Hyperbolic Cosine(反双曲余弦)HArccos(X) = Log(X + Sqr(X * X - 1))
Inverse Hyperbolic Tangent(反双曲正切)HArctan(X) = Log((1 + X) / (1 - X)) / 2
Inverse Hyperbolic Secant(反双曲正割)HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)
Inverse Hyperbolic Cosecant(反双曲余割)HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)
Inverse Hyperbolic Cotangent(反双曲余切)HArccotan(X) = Log((X + 1) / (X - 1)) / 2
以 N 为底的对数LogN(X) = Log(X) / Log(N)


您需要登录后才可以回帖 登录 | 立即注册
【本版规则】请勿发表违反国家法律的内容,否则会被冻结账号和删贴。
用户名: 立即注册
密码:
2020-2024 MaNongKu.com